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Abstract 

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging 

viral pathogen that causes the novel coronavirus disease of 2019 (COVID-19) and may result in 

hypoxemic respiratory failure necessitating invasive mechanical ventilation in the most severe 

cases.  

Objective: This narrative review provides evidence-based recommendations for the treatment of 

COVID-19 related respiratory failure requiring invasive mechanical ventilation. 

Discussion: In severe cases, COVID-19 leads to hypoxemic respiratory failure that may meet 

criteria for acute respiratory distress syndrome (ARDS). The mainstay of treatment for ARDS 
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includes a lung protective ventilation strategy with low tidal volumes (4-8 mL/kg predicted body 

weight), adequate positive end-expiratory pressure (PEEP), and maintaining a plateau pressure of 

< 30 cm H2O. While further COVID-19 specific studies are needed, current management should 

focus on supportive care, preventing further lung injury from mechanical ventilation, and treating 

the underlying cause.  

Conclusions: This review provides evidence-based recommendations for the treatment of 

COVID-19 related respiratory failure requiring invasive mechanical ventilation. 

Keywords: SARS-CoV-2; COVID-19; Acute Respiratory Distress Syndrome; Respiratory 

Failure; Lung Protective Strategy; Mechanical Ventilation  
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1. Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging viral 

pathogen that causes mild illness in some while others progress to respiratory failure requiring 

invasive mechanical ventilation [1,2]. The disease caused by SARS-CoV-2 has been termed the 

novel coronavirus disease of 2019 (COVID-19) [3]. Though incidence data is limited, a large 

case series of 1300 patients with COVID-19 from Italy found that 88% of critically ill patients 

required mechanical ventilation [4]. The mortality of those placed on mechanical ventilation is 

24.5% to 28% in case series and may be even higher as many patients still remain in the hospital 

[4,5]. One study conducted prior to COVID-19 suggests a lung protective strategy started in the 

emergency department (ED) is associated with a reduction in hospital mortality, pulmonary 

complications, and days requiring mechanical ventilation [6]. Therefore, it is important for 

emergency medicine clinicians to be aware of the management of mechanically ventilated 

patients, particularly as these patients may be boarding in the ED for an extended period of time. 

 

In the severest form, the characteristics of COVID-19 related respiratory failure may meet the 

definition of acute respiratory distress syndrome (ARDS) [7–10]. ARDS is defined by the Berlin 

criteria (Table 1) [11] and exists on a spectrum as a heterogeneous syndrome caused by multiple 

etiologies [12,13]. Practice guidelines from the Surviving Sepsis Campaign and National 

Institutes of Health (NIH) on the management of COVID-19 recommend a lung protective 

strategy with a high positive end-expiratory pressure (PEEP) strategy and low tidal volumes (4-8 

mL/kg predicted body weight) [14–16].
 
This review will discuss the physiology underlying 

COVID-19 related ARDS, lung protective ventilation strategies, individualized approaches to 
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mechanical ventilation, additional therapies, and a recommended approach to mechanical 

ventilation for the emergency clinician. 

 

2. Methods 

This is a narrative review of invasive mechanical ventilation strategies for COVID-19 related 

respiratory failure. Authors conducted a literature review of PubMed and Google Scholar using 

keywords of ―ARDS‖ OR ―Acute Respiratory Distress Syndrome‖ OR ―COVID-19‖ OR 

―SARS-CoV-2‖ OR ―2019-nCoV‖ OR ―hypoxemic respiratory failure‖ OR ―mechanical 

ventilation‖ OR ―driving pressure‖ OR ―ventilator-induced lung injury‖ from 1994 to May 2020. 

Respiratory physiology studies from 1969 to 1994 were also included.  Authors evaluated case 

reports and series, retrospective and prospective studies, systematic reviews and meta-analyses, 

and other narrative reviews. Authors also reviewed guidelines and supporting citations of 

included articles. Authors decided which studies to include for the review by consensus. When 

available, systematic reviews and meta-analyses were preferentially selected. These were 

followed sequentially by randomized controlled trials, prospective studies, retrospective studies, 

case reports, and other narrative reviews when alternate data were not available. Case reports, 

case controls, cohort studies, randomized clinical trials, meta-analyses and systematic reviews, 

and narrative reviews were included. Authors decided on the inclusion of 119 studies and 

included a total of 20 systematic reviews and meta-analyses, 30 randomized controlled trials, 8 

prospective studies, 12 retrospective studies, 3 basic science experimental studies, 11 case 

reports or case series, 22 narrative reviews and 13 expert consensus documents and guidelines. 

 

3. Discussion 
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3.1 Pathophysiology of Acute Respiratory Distress Syndrome and COVID-19 

Acute respiratory distress syndrome is a complex and heterogeneous syndrome [11,17]. Causes 

of ARDS include non-infectious etiologies (e.g., trauma, pancreatitis), pulmonary infections, and 

non-pulmonary infections [12,17]. However, the common theme is an inflammatory response 

causing lung and systemic organ injury. A severe, hyperinflammatory, cytokine-mediated lung 

injury has also been implicated in COVID-19 [9,18]. Pro-inflammatory cytokines may interfere 

with the normal adaptive response of hypoxic vasoconstriction [19]. Damage to alveolar 

epithelium and endothelium leads to leakage of protein-rich fluid and non-cardiogenic 

pulmonary edema [17]. Consequently, the injured lung becomes at greater risk of atelectasis with 

impairment of surfactant, alveolar edema and hemorrhage, reduced lung compliance, increased 

ventilation-perfusion mismatching, and right-to-left shunting [17,20]. All of these factors 

contribute to hypoxemia. The histological characteristic of ARDS is diffuse alveolar damage, 

though interestingly this finding is not observed in all patients meeting the Berlin definition of 

ARDS [17]. This pattern of diffuse alveolar damage has also been noted in an autopsy case series 

of COVID-19 patients [19,21].
 

 

ARDS is a clinical diagnosis that relies on the 2012 Berlin definition (Table 1) [11]. Notably, 

ARDS is defined as an acute process with bilateral lung opacities on imaging not from 

cardiogenic edema and a partial pressure of arterial oxygen to the fraction of inspired oxygen 

(PaO2/FiO2) ratio of < 300 mm Hg on a positive end-expiratory pressure (PEEP) of at least 5 cm 

H2O. ARDS is further categorized into mild, moderate, or severe, depending on the degree of 

impairment. Patients with COVID-19 requiring mechanical ventilation frequently meet the 

definition of ARDS [7,8].
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Lung compliance in COVID-19 related respiratory failure is variable [7,22]. It is important to 

note that respiratory system compliance of  < 40 mL/cm H2O was also originally considered in 

the Berlin definition of ARDS but was excluded after further evaluation [11]. Studies of ARDS 

in non-COVID-19 patients have also demonstrated a range of lung compliances and underlying 

causes [12,13], that are similar to currently published COVID-19 related ARDS patients [10]. 

This suggests that the treatments of ARDS developed over several decades remain applicable to 

the range of lung pathology observed in COVID-19 related respiratory failure  [10,23]. 

Moreover, deviation from a lung protective ventilation strategy with a high VT and low PEEP 

has historically been shown to cause lung injury in animal models [24–27]. 

Table 1. The Berlin Definition of the Acute Respiratory Distress Syndrome [11]. 

Clinical Feature Definition 

Timing Develops within one week of clinical insult 

Chest Imaging Bilateral opacities not otherwise explained by pleural 

effusions, lobar collapse or nodules 

Origin of Edema Non-cardiogenic edema; edema not suspected to be 

from an elevated left atrial pressure causing 

hydrostatic edema; an echocardiogram may be 

needed in unclear cases 

Oxygenation Mild: PaO2/FiO2 of > 200 mm Hg to < 300 mm Hg 

with PEEP or CPAP ≥5 cmH2O 

Moderate: PaO2/FiO2 of > 100 mm Hg to < 200 mm 

Hg with PEEP ≥5 cmH2O 

Severe: PaO2/FiO2 < 100 mm Hg with PEEP ≥5 
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cmH2O 

Abbreviations: FiO2, fraction of inspired oxygen; PaO2, partial pressure of arterial oxygen; 

PEEP, positive end-expiratory pressure; CPAP, continuous positive airway pressure  

 

Once ARDS is diagnosed, the treatment focuses on addressing the underlying cause while 

preventing ventilator induced lung injury (VILI) [24]. There are multiple sources of lung injury 

(Table 2). Volutrauma occurs from excess volume or pressure leading to overdistension (i.e. 

stretching) of at-risk alveoli [17,24]. Lung injury caused by overdistension may be noted grossly 

by barotrauma (e.g. pneumothorax, pneumomediastinum) or occur silently on the alveolar level 

[24]. In ARDS, the functional lung volume is reduced due to alveolar injury, edema, and 

atelectasis [17]. The reduction in aerated lung space is the underpinning for the low VT of lung 

protective ventilation (LPV).  The delivered VT generates a pressure within the lung. The 

generated pressure will vary depending on the size of the VT and an individual’s respiratory 

system compliance [28]. The plateau pressure (PPlat) estimates alveolar pressure, with a high PPlat 

suggesting alveolar overdistension [24,28]. Though a specific safe pressure threshold is 

unknown, it is recommended to maintain a PPlat < 30 cmH2O and a driving pressure (PPlat - PEEP) 

< 15 cm H2O [6,12,29]. The PPlat is measured with a 0.5-second pause at the end of inspiration in 

a passive patient when inspiratory flow reaches zero (Figure 1) [12]. It is important the patient is 

passive (i.e. without any spontaneous respiratory effort) during the inspiratory hold, as any 

patient effort (e.g. expiratory or inspiratory effort) will distort the PPlat measurement. Additional 

injury may come in the form of atelectrauma—repetitive opening and closing of alveoli leading 

to alveolar injury and denaturing of surfactant [17,24]. Atelectrauma has been shown to increase 
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inflammatory markers in animal models [12,17,25–27]. Atelectrauma is minimized by using 

appropriate PEEP to maintain alveolar aeration (i.e. recruitment) throughout the respiratory cycle 

[24]. 

 

Table 2. Types of ventilator induced lung injury (VILI) [24].
 

Injury Mechanism Minimization Strategy 

Atelectrauma 

(Recruitment/derecruitment 

injury) 

Lung injury caused by cyclic 

opening and collapse of 

atelectatic, but recruitable lung 

units. 

Ensure appropriate PEEP 

and tidal volumes. 

Barotrauma Lung injury (e.g. pneumothorax, 

pneumomediastinum, etc.) 

caused by high transpulmonary 

pressure disrupting the alveolar 

structures. 

Minimize excessive airway 

pressure and tidal volumes. 

Biotrauma Mechanical lung injury causes 

up-regulation and release of 

cytokines with a subsequent 

pulmonary and systemic 

inflammatory response causing 

multi-organ dysfunction. 

Lung protective strategy 

while treating the underlying 

cause.  

Consider immunomodulating 

therapies (e.g. 

corticosteroids). 

Oxygen toxicity Injury caused by the inability of 

cells to overcome oxygen free 

radicals, and absorption 

atelectasis. 

Turn down FiO2 as soon as 

possible to target an oxygen 

saturation of 92-96%. 
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Patient self-inflicted lung 

injury (P-SILI) 

Intense inspiratory force by the 

patient causing high 

transpulmonary pressure swings. 

Increase sedation with or 

without neuromuscular 

blockade if persistent, 

excessive, spontaneous 

respiratory effort is present.  

Shearing injury High shear forces at the junction 

of the collapsed and open lung 

units causing lung injury. 

Use appropriate PEEP to 

maintain recruitment and 

low tidal volumes.  

Modes like airway pressure 

release ventilation (APRV) 

may reduce shear stress. 

Volutrauma Non-homogenous lung injury 

caused by alveolar 

overdistension. 

Ensure a low tidal volume of 

4-8 mL/kg PBW. 

Figure 1. An example of a plateau pressure, checked after an end inspiratory pause when 

inspiratory flow has reached zero. The plateau pressure is 30 cm H2O, in a volume control 

mode with a set 420 mL (6 mL/kg PBW) tidal volume. The driving pressure is 15 cm H2O 

(plateau pressure of 30 cm H2O - PEEP of 15 cm H2O). The driving pressure is related to 

the static compliance of the respiratory system (CRS) by CRS = Tidal Volume/Driving 

Pressure. In this patient the CRS is low at 28 mL/cm H2O.  

  

3.2 A Lung Protective Strategy 

In COVID-19 related respiratory failure, care is focused on maintaining oxygenation while 

preventing VILI with lung protective ventilation (LPV).  The mainstays of LPV are low VT, 

sufficient PEEP to maintain lung recruitment, and low airway pressures [17,30–34]. Though 

ARDS is a heterogeneous syndrome, the following is recommended for all ARDS patients: (1) 

VT of 4 to 8 mL/kg predicted body weight (PBW) and (2) targeting a PPlat <30 cm H2O (Tables 3 
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and 4) [15,34,35]. Emerging data from several American tertiary care centers support this 

approach in patients with COVID-19 requiring invasive mechanical ventilation [10].  

Table 3. The Conventional Lung Protective Ventilation Strategy [12].
 

Variable Setting 

Tidal Volume 6 mL/kg PBW (Range: 4-8 mL/kg PBW) 

Plateau pressure Less than 30 cm H2O 

Respiratory rate Up to 35 breaths per minute, goal of pH 7.30-7.45 

but may allow permissive hypercapnia with a pH 

>7.15 

Positive End Expiratory Pressure Initiate at ≥5 cm H2O 

Titrate according to ARDSnet lower PEEP/higher 

FiO2 table 

Oxygenation target 

PaO2 

SpO2 

Titrate FiO2 to: 

55-80 mmHg  

88-95% 

 Abbreviations: PBW (predicted body weight), PEEP (positive end-expiratory pressure) 

 

Table 4. PEEP/FiO2 Titration Strategies [12].  

Lower PEEP/FiO2 Combination 
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FiO2 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.7 0.8 0.9 0.9 0.9 1.0 

PEEP 

(cm 

H2O) 

5 5 8 8 10 10 10 12 14 14 14 16 18 18-24 

Higher PEEP/FiO2 Combination 

FiO2 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.7 0.8 0.8 0.9 1.0 

PEEP 

(cm 

H2O) 

5-12 14 14 16 16 18 20 20 20 20 22 22 22-24 

Abbreviations: PEEP (positive end-expiratory pressure), FiO2 (fraction of inspired oxygen) 

The ARDSnet ARMA trial showed a mortality benefit in patients with ARDS using a low (6 

mL/kg PBW), as compared to a high (12 mL/kg PBW), VT ventilation strategy, PEEP set by the 

lower PEEP/FiO2 table (Table 4) and a goal PPlat less than 30 cm H2O (Table 3) [12]. Though an 

initial improvement in oxygenation with a larger, 12 mL/kg VT may be seen, this trial showed 

the initial improvement in oxygenation with a larger VT is at the expense of a later increase in 

mortality [12]. Early initiation of LPV initiated in the ED is associated with improved mortality 

and patient outcomes [6]. The traditional LPV approach uses a PEEP/FiO2 table to determine the 

set PEEP based on the degree of hypoxemia and FiO2 requirement (Table 4) [12]. Currently, the 

Surviving Sepsis Campaign and NIH recommend a higher PEEP strategy over lower PEEP 

strategy for patients with ARDS due to COVID-19; however, this is a weak recommendation 

based on low-quality evidence [14–16,36]. This prescriptive setting of PEEP has been criticized 

in COVID-19 because it lacks sufficient individualization to the variable response to PEEP [37]. 

3.3 An Individualized Approach 

Description of PEEP and Recruitment Maneuvers in ARDS 
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The tenants of ARDS management and LPV are low Vt and cautious use of PEEP [17]. ARDS is 

a heterogeneous disease with a variety of potentially recruitable, PEEP-responsive lung units 

[38]. This heterogeneity means a single prescribed VT and PEEP impacts each lung unit 

differently depending on the local level of functional impairment (e.g. edema, atelectasis). An 

inherent tradeoff with any PEEP application is the need to balance improving oxygenation with 

potentially inducing VILI [39,40]. PEEP can be beneficial by recruiting and aerating collapsed 

lung units, improving gas exchange, and minimizing atelectrauma. However, it can also be 

harmful by over-distending the lung, increasing pulmonary vascular resistance, worsening 

ventilation and perfusion matching, and inducing hemodynamic instability by decreasing 

cardiovascular preload.  Finding the optimal PEEP may not rest on one variable [22]. The elusive 

goal to find the optimal PEEP is not new [41] and strives to maximize the beneficial effects of 

PEEP while minimizing the harmful effects.  

 

One method of PEEP adjustment was described in the ARDSnet trial in the form of a high and 

low PEEP/FiO2 table based on levels of hypoxemia [12] (Table 4). A mortality benefit has not 

been detected with the high PEEP/FiO2 compared to the low PEEP/FiO2 table [42–45].  Despite 

lack of proven superiority, current recommendations support a high PEEP strategy for moderate 

to severe ARDS (PaO2/FiO2 < 200 mm Hg) which is consistent with current COVID-19 

recommendations [14–16,34,36,46]. The PEEP tables are unable to take into account the extent 

of individual lung injury and recruitability. For instance, a low PEEP in potentially recruitable 

lungs does not allow for the beneficial effects of PEEP while a high PEEP strategy with low lung 

recruitability can lead to over-distention and increased lung injury [47]. Marini and Gattinoni 

[37] suggest that different COVID-19 ARDS phenotypes require varied management strategies. 
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These two ―H‖ and ―L‖ phenotypes are based on lung CT imaging, compliance, and response to 

PEEP [22,37,48,49]. However, these phenotypes for COVID-19 have not been validated in other 

studies and should not form the foundation of therapy. ARDS phenotypes have been previously 

described [50] and may provide insight into a personalized approach. Personalized ventilator 

strategies compared to a uniform approach may be helpful; however, caution must be used with 

personalization because if incorrectly assessed, mortality may increase [51]. 

 

There remains controversy surrounding the use of recruitment maneuvers. A recruitment 

maneuver is a prolonged inspiratory hold on higher levels of CPAP, such as 35–40 cm H2O for 

30-40 seconds [16,52]. Evidence from a systematic review and meta-analysis showed improved 

oxygenation without an increased risk of barotrauma [52]. However, other studies show 

recruitment maneuvers with PEEP titration increase mortality compared to a standard 

PEEP/FIO2 table [53].  In COVID-19, if hypoxemia exists despite optimization of ventilator 

settings, recruitment maneuvers may be considered while monitoring for harmful effects such as 

oxygen desaturation, hypotension, or barotrauma [15,16].  

 

Driving Pressure  

Driving pressure can be calculated easily at the bedside by obtaining the PPlat during an end-

inspiratory pause in a passive patient in a volume-targeted mode of ventilation. It is calculated by 

PPlat - PEEP. The driving pressure reflects the static compliance of the respiratory system (CRS) 

by the equation of CRS= VT /( PPlat - PEEP).  As the equation suggests, a change in VT or a 

change in pressure will affect the compliance of the respiratory system. It is possible that a 

change in PEEP may decrease the pressure associated with a VT (i.e. improve the CRS) if it is 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

able to recruit previously non-aerated lung (Figure 2) [29,54]. Similarly, it is also possible that an 

increase in PEEP could worsen CRS if an increase in pressure does not improve recruitment and 

instead causes overdistension (Figure 2), leading to lung injury and worsening dead space or 

causing hemodynamic compromise [55].
  
The driving pressure may offer a better quantification 

of functional lung size as compared to PBW for a set VT because PBW is proportional to total 

lung size and not the reduced, functional lung size in ARDS [51,55]. 

Amato et. al. performed a retrospective review [29] of the ARDSnet trial data and showed that 

driving pressure was the ventilation variable that best stratified mortality risk in ARDS. Higher 

mortality was noted with a higher PPlat only when higher driving pressures were present. 

Similarly, protective effects of PEEP were noted only when associated with decreased driving 

pressures [29]. The association of higher driving pressures and higher mortality rate for 

mechanically ventilated patients with ARDS was also identified in a subsequent meta-analysis. 

Despite the strong association with mortality in retrospective studies [29,56], the routine use of 

driving pressure in ARDS has not demonstrated a mortality benefit in prospective randomized 

controlled trials [53,56]. One study using recruitment maneuvers followed by PEEP titration to 

the best CRS demonstrated an increase in mortality when compared to PEEP set by the low 

PEEP/FiO2 table [53]. This study suggests the combination of recruitment maneuvers and PEEP 

titration to best CRS should not be used together to set PEEP. Therefore, the driving pressure 

should be used as a compliment—not a replacement—to the evidence-based VT, PPlat, and PEEP 

recommendations.  

When ventilating an ED patient in a volume targeted mode, clinicians should re-evaluate the 

ventilator settings if the driving pressure is above 15 cm H20 [29]. The first option to decrease 

the driving pressure is to decrease the VT. Once a VT of ≤ 4-6 mL/kg PBW has been achieved, 
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the next step is to adjust the PEEP and follow the change in driving pressure. At a fixed VT, the 

PEEP that leads to the smallest driving pressure is the ideal PEEP for improving respiratory 

system compliance (Figure 2). This is accomplished by incrementally adjusting PEEP, to the 

range of the targeted PEEP from the PEEP/FiO2 table (Table 4), while monitoring the driving 

pressure.  The goal of assessing driving pressure is to detect the individual heterogeneity of 

PEEP responsiveness seen in COVID-19 related ARDS. Driving pressure may aid in identifying 

those who may benefit, or be harmed, from a higher or lower PEEP than prescribed in the 

PEEP/FIO2 tables.  

Figure 2. A representation of the relationship between compliance of the respiratory 

system (CRS) and PEEP. If increasing PEEP improves recruitment, by aeration of 

previously non-aerated lung, then compliance will improve until the lungs are 

overdistended and compliance worsens.  

 

Transpulmonary Pressure  

Regional lung overdistention is a key factor in VILI, but it can be difficult to measure directly 

[24]. Overdistention occurs because of the high-pressure differences across the lung tissue, 

referred to as the transpulmonary pressure. The PPlat is the average alveolar pressure and often 

serves as a surrogate for inflation pressure and overdistention. In some instances, a high alveolar 

pressure (i.e. PPlat >30 cm H2O) may not reflect an injurious high transpulmonary pressure 

because of the counter-pressure (i.e. pleural pressure) provided by the chest wall and abdominal 

contents. As an example, a trumpet player with a very high alveolar pressure does not encounter 

elevated transpulmonary pressures because of the elevated pleural pressures generated to play the 

instrument [24,57]. Similarly, a stiff chest wall or rigid abdominal compartment may cause a 

high PPlat despite a safe, normal transpulmonary pressure [24]. One method of estimating pleural 

pressure is by using a balloon manometer to measure the esophageal pressures as a surrogate for 
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pleural pressure. However, this complex strategy is not recommended in the emergency 

department as it is cumbersome and has not been shown to be beneficial when compared to 

empiric PEEP set by the PEEP/FiO2 tables (Table 4) [58,59]. 

3.4 Additional Therapies in ARDS 

Prone Positioning 

Prone positioning has been utilized for many years to improve oxygenation and outcomes in 

ARDS [60,61]. This position, commonly referred to as ―proning,‖ utilizes gravitational effects to 

conform the shape of the lung to the chest cavity and ultimately reduce the pleural pressure 

gradient from non-dependent to dependent regions [62]. In addition to a more favorable and 

equitable distribution of aeration, proning increases end-expiratory lung volume, improves 

ventilation-perfusion matching, increases secretion clearance, and alters chest wall mechanics, 

leading to regional changes and improvements in overall lung ventilation [61,63–65]. Prone 

positioning has been shown in several studies to protect against VILI [62,66–69] and also has a 

mortality benefit [60,70,71]. Proning should be considered in patients with ARDS and a 

PaO2/FiO2 ratio < 150 despite optimized ventilator settings [60].  This is consistent with the 

current COVID-19 recommendations where patients with moderate to severe ARDS should be 

proned for 12 to 16 hours at a time [16].
 
Proning on mechanical ventilation is beneficial when 

started early, after 12-24 hours of stabilization on the ventilator [60]. Unless there is a significant 

delay in the transfer, proning in the mechanically ventilated patient can generally wait for 

admission to the intensive care unit (ICU). If proning is started in the ED, neck and shoulder 

mobility should be assessed to ensure the patient can tolerate a prone position. Additionally, the 

team must wear appropriate PPE [15] and must be trained to monitor for pressure points and 

avoid accidental extubation, which can lead to loss of recruitment and potential exposure to the 
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team. Due to the inherent risks and challenges, a collaborative approach with a practiced team is 

recommended prior to attempting prone positioning in the emergency department.  

  

Inhaled Pulmonary Vasodilators 

Inhaled pulmonary vasodilators predominantly distribute to ventilated alveoli causing localized 

vasodilation, thereby improving ventilation-perfusion matching [72–74]. While no mortality 

benefit has been demonstrated [75–77], inhaled nitric oxide and inhaled prostacyclins (e.g. 

epoprostenol) are used as rescue agents to reduce hypoxia-mediated vasoconstriction and 

improve oxygenation in severe ARDS [72,75,78,79]. The ease of delivery, inexpensive cost, and 

infrequent adverse events have made prostacyclins a more favorable choice [73], as inhaled nitric 

oxide [80] has been associated with increased renal impairment [81].
  
These decisions must be 

made within the local practice environment accounting for availability and ventilator circuit type. 

Also, there may be an increased risk of aerosolization with inhaled pulmonary vasodilators that 

should be taken into consideration. The Surviving Sepsis Campaign guidelines for COVID-19 

recommend against the use of routine use of inhaled nitric oxide but suggest that a trial of 

inhaled pulmonary vasodilators may be used as a rescue therapy while monitoring for rapid 

improvement in oxygenation [16].  

 

Neuromuscular Blocking Agents (NMBA) 

Long-acting neuromuscular blocking agents (e.g. vecuronium and cisatracurium) used in 

moderate-to-severe ARDS have been shown to minimize patient-ventilator dyssynchrony, 

decrease work of breathing [82], improve oxygenation [83], reduce inflammatory biomarkers 

[84], and potentially increase the number of ventilator-free days and days outside the ICU [85]. 
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The routine use of neuromuscular blockade in ARDS has been called into question after a 2019 

multicenter randomized control trial evaluating the use of early paralytics and high PEEP in 

patients with moderate-to-severe ARDS found no difference in 90-day mortality when compared 

to usual therapy [86]. The evidence on neuromuscular use in COVID-19 induced ARDS is 

limited, and the long-term outcomes are unclear. In mechanically ventilated COVID-19 patients 

with moderate-to-severe ARDS, the Surviving Sepsis Campaign guidelines suggest using 

intermittent NMBA boluses instead of a continuous infusion to better facilitate lung protective 

ventilation [16]. The use of continuous NMBA infusions for up to 48 hours should be reserved 

for patients with persistently high PPlat, poor oxygenation, and ventilator dyssynchrony [16].
 

  

Medications 

The role of corticosteroids in the early and late stages of ARDS is controversial and widely 

debated. Two meta-analyses demonstrated reduced mortality, increased ventilator-free days, and 

accelerated resolution of disease when steroids were started several days after the onset of ARDS 

[87,88]. A more recent trial examining dexamethasone in patients with ARDS and a PaO2/FiO2 

ratio of < 200 mmHg despite optimal ventilator settings suggested an improvement in outcomes 

[89]. However, a different meta-analysis did not support their use in either the acute or later 

fibroproliferative phases of the disease [90]. The current evidence of steroids use in COVID-19 

induced ARDS is still emerging. A non-peer reviewed study of 26 patients with severe COVID-

19 reported a decreased requirement for supplemental oxygenation and improvement on 

radiological chest imaging among patients who received corticosteroids [91]. There is a 

randomized control trial in Chongqing, China actively enrolling patients looking at the effect of 

glucocorticoids in COVID-19 patients with severe disease, which may provide further data [92].
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Two more recent retrospective studies, albeit with small sample sizes and poor data 

controllability, reported that low-dose corticosteroid therapy may not delay viral clearance in 

COVID-19 patients [93,94]. Based on several Cochrane reviews on the use of steroids in viral 

pneumonia and a retrospective cohort study of patients with COVID-19 pneumonia [95], the 

Surviving Sepsis Campaign guidelines suggest the use of corticosteroids in critically ill patients 

with COVID-19 induced ARDS [16], while the NIH guidelines [15] make no recommendations 

based on limited evidence. Given the small improvements in mortality and faster resolution of 

septic shock observed from recent systematic reviews [96,97], they advise against the use of 

systemic corticosteroids of COVID-19 patients without ARDS unless the patient is in septic 

shock [16].
 
In patients with COVID-19, meeting criteria for ARDS, steroids should be 

considered in consultation with the admitting critical care team.  

  

Venovenous Extracorporeal Membrane Oxygenation 

Venovenous extracorporeal membrane oxygenation (vvECMO) is a form of pulmonary bypass 

that uses an external membrane to allow for oxygen diffusion into the blood and the diffusion of 

carbon dioxide out of the blood. Over the last decade, several trials have shown increased use 

and potential benefits of vvECMO in severe ARDS when conventional ARDS management 

failed [98,99]. In COVID-19 patients, the Extracorporeal Life Support Organization (ELSO) 

guidelines state that indications for vvECMO should not differ from their usual 

recommendations or other existing guidelines [100,101].  The Surviving Sepsis Campaign 

guidelines for COVID-19 and ELSO recommend transfer to an ECMO experienced center for 

patients with severe ARDS and refractory hypoxemia despite maximal ARDS therapies [16].
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3.5 An Initial Approach to COVID-19 Hypoxemic Respiratory Failure 

It is difficult to identify the optimal management of COVID-19 hypoxemic respiratory failure. 

Herein, we provide a rational approach based on the currently available evidence and lessons 

learned over the last few decades (Figure 3). An initial approach to manage hypoxemia includes 

a trial of simple oxygen devices, high-flow nasal cannula (HFNC), or non-invasive positive 

pressure ventilation (NIPPV) if HFNC is not available [16]. A trial of HFNC or non-invasive 

positive pressure (NIPPV) is reasonable if intubation is not immediately indicated, if 

conventional oxygen devices fail to maintain an oxygen saturation of > 90%, or if increased 

respiratory effort persists. HFNC has shown particular success in prior studies of hypoxemic 

respiratory failure and should be considered as a first-line treatment when simple oxygen devices 

fail to correct the hypoxemia [14–16,102]. Non-invasive positive pressure (NIPPV) delivering 

PEEP in the form of continuous positive airway pressure (CPAP) may also have advantages, 

particularly with a helmet interface [103]. Bilevel positive pressure settings, delivering an 

additional inspiratory pressure, risk delivering injurious VT [102] and should be avoided unless 

otherwise indicated (e.g. an exacerbation of obstructive lung disease) [104]. The addition of 

awake, self-prone positioning may improve oxygenation in patients with COVID-19 [105], but 

long-term effects of this practice are unclear. Personal protective equipment and airborne 

precautions must be utilized when using devices that can cause aerosolization [15]. The risks of 

aerosolization may not be increased with HFNC as compared to low flow oxygen devices [106]; 

if HFNC is used, a surgical mask to cover the device on the patient’s face is recommended.   

 

When HFNC or NIPPV is started, patients must be reassessed frequently—waiting until failure is 

associated with worse outcomes [102,107,108]. Patients on HFNC who remain tachypneic, have 
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significant work of breathing, have rapidly escalating oxygen requirements, or remain hypoxic 

despite maximal flow (i.e. 60 L/min) and FiO2 should be intubated. The severity of hypoxemia, 

underlying illness, and clinical trajectory of these patients are important components of the 

decision to intubate. NIPPV failure rates for acute hypoxemic respiratory failure are higher in 

patients with pneumonia, sepsis, severe hypoxemia (PaO2/FiO2 < 150-200 mm Hg) [109,110], 

and persistently large tidal volumes (>9.5mL/kg PBW)[111].  In those with persistently high 

respiratory effort, one must consider the possibility of self-inflicted lung injury. It is theorized 

that patients with a high respiratory effort are generating very high VT and high transpulmonary 

pressure, which could potentially lead to a self-inflicted lung injury [37,112]. Patients with 

persistently high respiratory efforts despite non-invasive support measures may benefit from 

early intubation, sedation, and control of VT and airway pressure. 

  

Once invasive mechanical ventilation has started, LPV with low VT and appropriate PEEP 

should be started (Figure 3 and Table 4). This strategy has been successfully used in a case series 

of COVID-19 patients [10] and is recommended by The Surviving Sepsis Campaign and NIH 

guidelines [14–16]. Ventilator modes vary between institution and device. A simple and effective 

strategy for the emergency department is to choose a volume targeted mode of ventilation (e.g. 

volume control). This allows for a safe, prescribed VT to be delivered. A pressure targeted mode 

(e.g. pressure control) is also an option but the delivered VT is less strict and will vary depending 

on the patient’s lung compliance, resistance, and the set inspiratory time. There is no outcome 

evidence to support the superiority of a pressure-controlled or volume-controlled mode of 

ventilation in ARDS [113]. Airway pressure release ventilation (APRV) has been used in ARDS 

[114] but the mode is complex, not available on every ventilator, and can lead to significant 
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adverse events if used improperly [115]. For these reasons, APRV is not the initial preferred 

strategy in the ED, but this may vary by institution or local practice. Choosing a volume-

controlled mode that allows a set VT is recommended. When the volume is set, the PPlat should be 

monitored by an end-inspiratory pause to ensure it remains < 30 cm H2O. Similarly, the driving 

pressure should be targeted < 15 cm H2O. If the PPlat or driving pressure are above these targets, 

decrease the VT by 1 mL/kg to a minimum of 4 mL/kg. The respiratory rate may need to be 

increased up to 35/min to maintain an appropriate minute ventilation. A pH target of 7.30-7.45 is 

recommended, but if necessary, permissive hypercapnia may be instituted, tolerating a pH > 7.15 

[12].  

 

Ideally, sedation should be kept as light as possible with a Richmond Agitation Sedation Scale of 

0 (alert and calm) to -1 (drowsy but awakens to voice for > 10 seconds); a lighter sedation 

strategy started in the ED is associated with improved outcomes [116]. Ventilator dyssynchrony 

is common [117] and places patients at risk for lung injury. A potential treatment for ventilator 

dyssynchrony is liberating the VT up to 8mL/kg, if the PPlat and driving pressure are at safe 

levels, or adjusting the inspiratory flow pattern (e.g. decelerating flow). If the PPlat or driving 

pressure is elevated or dyssynchrony persists, deep sedation with or without NMBAs may be 

needed. 

 

Adjust the FiO2 to target an oxygen saturation of 92-96% [16]. The change from the original 

ARDS trial target of 88-95% [12] reflects a 2020 multicenter, randomized trial demonstrating a 

lack of benefit and potential of harm with a conservative (88-92%) vs. liberal (> 96%) 

oxygenation strategy in ARDS [118]. The response to PEEP will be variable for all patients [38]. 
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The PEEP/FiO2 tables (Table 4) provide guidance and have been used successfully in ARDS 

[12]. After intubation, start with a PEEP of 8-10 cm H20 and choose the range of PEEP by the 

high or low PEEP/FiO2 table (Table 4)[6]. Adjust the PEEP every 15 minutes by 2-3 cm H2O, 

while monitoring the PPlat, driving pressure, blood pressure, and pulse oximetry after each 

adjustment. A PPlat <30 cmH20 and driving pressure <15 cmH20 should be targeted. If pressures 

are above these levels, patients are at risk for VILI.  

 

A conservative fluid resuscitation strategy should be used in patients with ARDS, as this may 

improve lung function [14,16,119]. Adjunctive therapies such as pulmonary vasodilators, 

corticosteroids, and proning should be considered on a case by case basis with input from the 

admitting critical care team. If the patient is unable to be oxygenated or ventilated despite 

optimized ventilator settings, consultation with an ECMO center should be considered. 

 

Figure 3. A recommended initial approach to COVID-19 related hypoxemic respiratory 

failure in the Emergency Department. Abbreviations: HFNC (high flow nasal cannula), 

NIPPV (non-invasive positive pressure ventilation), PBW (predicted body weight), VT (tidal 

volume), P/F (PaO2/FiO2 ratio), IV (intravenous) 

 

 

4. Conclusion 

 

In severe cases, COVID-19 leads to hypoxemic respiratory failure that may meet criteria for 

ARDS. While further COVID-19 specific studies are needed, the mainstay of treatment for 

COVID-19 related ARDS remains the early implementation, in the ED, of a lung protective 

ventilation strategy with low tidal volumes, adequate PEEP, and maintaining a plateau pressure 

of < 30 cm H2O. Adjunctive therapies such as corticosteroids, proning, NMBAs, pulmonary 
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vasodilators, and ECMO in refractory cases should be considered on a case by case basis with 

input from the admitting critical care team.  
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